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INTRODUCTION

This document is the final report for Phase II of the Track Tapering System Project, Contract Number
F40600-90-C-0024. This project is the second phase of an SBIR program to provide rapid track tapering
for the Hypervelocity Test Track facilities at Amold Engineering Development Center (AEDC). During
Phase 1, the concepts for a track tapering system were developed, tested, and verified. During this phase,
these concepts have been developed, fabricated, and installed in the track.

The emphasis of this report is on the design and fabrication of the track tapering system. The remainder of
this section describes the Hypervelocity Test Track and gives a statement of the problem for this project.
This is followed by a discussion of the specific objectives for the program and an overview of the track
tapering system. Next, the specific design, fabrication, and testing of each major subsystem is discussed in
detail. Finally, the installation of the hardware and training of AEDC personnel is presented. A complete
guide to operating the system can be found in QUEST Technical Communication No. 378, "User's Manual,
Rail Position Gauge."

BACKGROUND

The Hypervelocity Test Track is located in G-Range at AEDC. This facility is used for testing projectiles
at speeds up to 24,000 feet per second. A light-gas gun is used to propel the projectiles down the track. As
shown in Figure 1, the track is composed a series of precision bored tubes with four orthogonal rails
mounted inside. The rails provide a guiding surface for the projectiles as they fly down the track. The
spacing between the rails is 3.3 inches. Each tube and rail assembly is ten feet long and is called a track
section. The track sections are suspended from an outer pressure vessel. Flanges are used to connect the
sections to form a continuous track 880 feet long. At the exit of the track is a recovery tube that is 520 feet
in length. The recovery tube is used to decelerate the models for recovery and analysis.
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Figure 1. G-Range Test Hypervelocity Test Track
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Under certain circumstances, is it is desirable to taper the final 200 feet of the Hypervelocity Test Track to
compensate for the wear on the projectiles. By doing so, the projectiles are prevented from ricocheting
from rail to rail as they progress down the track. In addition, the taper provides a smooth transition from
the track to the recovery tube.

Previously, a significant effort was required to adjust the taper in the track. Each section had to removed
from the track so that the individual rails could be shimmed to provide the correct distance between the
rails as well as maintain the concentricity of the rails with respect to the support tube. When the section
was returned to the track, it had to be aligned with respect to its neighbors. In particular, each rail had to
be checked for proper alignment with the uprange and downrange track sections. Misalignments of the
rails could have resulted in the catastrophic destruction of a projectile, causing damage to the G-Range
facility. A system to allow rapid changes to the taper of the final 200 feet of the Hypervelocity Test Track
has been developed and installed in this program.

The following documents are listed for reference and may provide the reader with a broader understanding
of the background of this program:

e "Remote Track Tapering Final Report," August 1989, Flow Research Report No. 483.
e "Track Tapering System," Phase II Proposal, October 1989, Flow Research Proposal No. AIC220016.
e "Ballistic Range Track Tapering System Phase II Statement of Work," Fcbruary 1990.

STATEMENT OF THE PROBLEM

To reduce the time and expense of adjusting the taper on the Hypervelocity Test Track, a system was
needed to allow the track taper to be adjusted without removing any sections from the track. The tapering
system had to calculate, adjust, and verify rail positions along the last 200 feet of track. The system had to
be capable of providing a linear taper starting at a 3.3-inch diameter at the uprange end to a 3.3- to 3.1-
inch diameter at the downrange end of the track. The system had to maintawn the concentricity of the rail
diameter with respect to the support tube, and it needed to provide adequate stiffness to prevent rail
movement during use.

PROGRAM OBJECTIVES
The specific objectives for this Phase II program were:

e Reduce the time required to taper the track by allowing in situ rail adjustment.
¢ Improve the accuracy of the rail positioning and taper.
e Provide a method for verifying the rail position while the sections are installed in the track.

GUIDELINES AND ASSUMPTIONS

o The amount of permanently mounted hardware for the rail support and adjustment mechanism must be
kept to a minimum to allow maximum access to the track for experimentai apparatus.

e Access is available to the track sections along the entire length of the 200-foot-long taper section.
e The system cannot require replacement of the existing support tubes and rails.
e Moadifications to the existing support tubes and rails are acceptable, but should be minimized.

TR-602/11-93 2




e The maximum spacing between rail supports is 18 inches.
o Mechanisms that will be installed in G-Range should not require lubrication.

PERFORMANCE REQUIREMENTS

This program had the following specific performance requirements:

e A new track taper can be implemented with less than 48 man-hours of effort.

o The rails must be kept concentric with the support tube inside diameter within a tolerance of +0.002
inch.

o The proper rail diameter must be maintained along the entire taper section to within £0.002 inch.
e The rails must be positively locked in place so that no rail movement is allowed during track shots.

PROGRAM OVERVIEW

To accomplish the tasks of calculating, adjusting, and verifying rail position, the tapering system developed
in Phase II is composed of three main subsystems:

e The modified track assemblies
o The rail position gage
e The taper scheduling software

The rail adjuster assemblies (Figure 2) contain the rail within the support tube and provide a range of radial
adjustment for the rail. The rail position gage (Figure 3) measures the radial position of the rail with
respect to the internal diameter of the support tube. The gage can provide information about the distance
between the rails and the centration error with respect to the support tube, or it can report the radial
distance from the centerline of the support tube internal diameter and the face of each rail. The taper
scheduling software is a stand-alone program that runs on a DOS computer. The software allows the
operator to select the entrance and exit diameters for the taper section, and the software will generate the
correct rail settings for each adjuster along the length of the taper section.

The tapering system development consisted of the following Phase II program tasks:

1. System Design

2. Prototype Development
3. Final Design

4. Fabrication

5. Assembly and Installation

The preliminary design for the taper system was completed in Task 1. A preliminary design review was
held at QUEST Integrated, Inc., and was attended by Captain Dave Burgess and Larry Campbell of
AEDC. Based on this review, prototypes of the subsystems were built and tested in Task 2. A final design
was prepared in Task 3 and a final review was held at QUEST with Captain Burgess and Larry Campbell.
The final design was fabricated, tested, and installed at AEDC.
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During the course of this program, the G-Range facility at AEDC was being upgraded from a 2.5-inch-
diameter to a 3.3-inch-diameter gun and track as part of a another, larger improvement project. The track
tapering project was synchronized with this larger track upgrade in order to insure compatibility between
the tapering system and the new track. This had no effect on the budget for this program, but it did extend
the program duration to three years. However, coordination between the two projects produced a tapering
system that is completely compatible with the new track diameter.

DESIGN

The design effort for the track tapering system was carried out in three tasks: System Design, Prototype
Development, and Final Design. The following sections present a brief overview of the design and
selection process and then present the final system design.

MODIFIED TRACK ASSEMBLIES

This section describes the development of a mechanism to allow radial adjustment of the rail position
within the support tube. The first subsection deals with the design of the adjustment mechanism itself, and
the second describes the method for determining the number of adjusters required on each support tube.

Adjuster Design

A cross section of the support tube and rails is shown in Figure 4. As indicated by the figure, the two
critical dimensions for maintaining the correct track taper are the rail diameter dimension and the rail
centering dimension. The rail diameter dimension is the distance between the opposing rail faces. The
centering dimension is the concentricity of the rail faces to the internal diameter of the support tube.

TRACK SECTION

Figure 4. Hypervelocity Test Track Support Tube Assembly
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The original track hardware used cap screws to bolt the rails against the internal diameter of the support
tube. The cap screws were spaced at approximately 12-inch intervals (axially) along the support tube.
The support tube internal diameter was used as a radial reference for the rail position. The existing
practice for tapering at AEDC was to place shim stock between the back of the rail and the inside surface
of the support tube. This procedure would adjust the rail toward the center of the support tube, reducing
the rail diameter. The shimming and measuring of the rails was very time consuming.

The concept for rail adjustment was to replace the cap screws in the support tube assembly with small but
very stiff adjuster mechanisms. This would give AEDC personnel the ability to make fine adjustments to
the rail position from the outside of the support tube, even while the support tube was installed in G-range.
As explained above, the adjusters had to be compatible with the existing support tubes and rails and should
only require a minimum of modifications.

Figures 5 through 8 show four of the concepts that were developed and tested during this program. All of
these designs incorporate the following features:

o The existing cap screw holes on the support tube are enlarged and threaded to accept the adjuster body.
e A hexagonal-shaped adjuster body threads into the support tube.

* A cap screw passes through a bushing and then threads into the existing holes in the rail.

e The bushing is a precision fit in the bore of the adjuster body, creating a radial slide mechanism for the rail.

e An o ring seals the bottom of the adjuster so that track debris cannot contaminate the bore of the
adjuster.

» The clearance between the cap screw and the I.D. of the bushing allows some adjustment at assembly
for variations in the spacing of the adjuster bodies in the support tube and the tapped holes in the back
of the rail.

e A screw mechanism is provided to radially position the rail with respect to the adjuster body.

The adjuster design, shown in Figure 5, incorporates a differential screw mechanism to allow very fine
adjustment of the rail position. A pin spanner wrench was used on both the cap and the adjuster nut. The
principal drawback of this design was that the cap had to be removed to access the adjuster nut. When the
cap was replaced and locked down, the adjustment would typically change by a small amount.

The design in Figure 6 used a split adjuster nut for a locking feature. Tightening the center cap screw
drives the cone-shaped collar into a taper on the inside of the adjuster nut, which expands the nut against
the threads of the adjuster body. This worked well because it removed all the clearance from the adjuster
nut threads, creating a very stiff assembly. The drawback of this design was that the center cap screw had
to be loosened to adjust the rail taper position. An undesired side-effect of loosening the cap screw was
that the rail could shift and change its clocking position with respect to the other rails. Although unlikely, it
is possible that with this design the rails could be matched in radial position, but unmatched in clocking
position at the joint between two support tube assemblies. Consequently, the development effort
concentrated on finding a design that decoupled the adjustment locking feature from the center cap screw.

To prevent the interaction between the locking mechanism and the adjustment, a new clamping feature was
incorporated, as shown in figure 7. As with the first design, a differential screw is used to provide a very
fine adjustment for rail radial position. A split clamp is used to grip the bushing with respect to the
adjuster body. A prototype of this design showed that the clamp was not very stiff and could not sustain a
large radial force on the rail. This was seen as a serious drawback, because the forces imposed on a rail by
a glancing blow from a projectile have never been measured and could be quite large.
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The final design for the adjuster is shown in Figure 8. This approach is a hybrid of the previous designs.
A center cap screw is used to preload the bushing and an adapter against the back of the bolt. The cone-
shaped locknut draws the adapter against the underside of the split adjuster nut and simultaneously expands
the nut against the threads in the adjuster body. There are several advantages to this design:

o The cap screw is tightened during the setup process to establish the rail clocking and is not used during
the taper adjustment process.

e The adjustment system allows simultaneous access to both the adjuster nut and the locknut.

e The locknut removes any clearance in the mechanism, so there is negligible hysteresis in the position of
the rail after adjustment.

Adjusting the rail position is very simple for this design. A pin spanner wrench is used to rotate the ad-
Juster nut, and a standard box-end wrench is used on the locknut. The two are slightly preloaded against
each other to remove any clearance and then rotated together to change the rail position. When the desired
position has been reached, the adjuster nut is held fixed while the locknut is tightened. Although this ad-
Juster does not incorporate a differential screw, the resolution was found to be satisfactory. This design
also allows the entire assembly to be removed and replaced without removing the track section and rail
from G-Range.

All of the above adjuster designs were tested for their stiffness and hysteresis. This was done because the
forces incurred during a projectile strike on the rail could be substantial. A simple test setup was used on a
hydraulic press to determine the deflection of the rail with respect to the support tube when radial forces are
applied to the rail. Forces from 1000 to 5000 pounds were applied, and the change in the location of the
cap screw and bushing with respect to the adjuster body were recorded. The results of these tests are
shown in Figure 9. Clearly, the chosen design matches the best stiffness and least hysteresis of any of the
designs. The lack of stiffness and hysteresis of the side clamp model is also evident. From the graph, the
value of preload within the mechanism and an integral locking mechanism were apparent. The final design
blended the best characteristics of the previous efforts.

Adjuster Spacing

Another aspect of the rail support was to determine the axial spacing of the adjusters along the support
tube. As described above, the existing support tubes used cap screws on approximately 12-inch spacing to
secure the rails. Some compromise had to be found between providing adequate support for the rail but not
overconstraining the rail so that taper changes caused binding between the adjusters. This decision was
complicated by a lack of information about the forces seen by the rail during a glancing blow from a
projectile during a G-Range test shot. The experience at G-Range is that the 12-inch spacing has always
been adequate, but 2 few sections have operated with as much as 36-inch spans between the rail supports.
Because the projectile impact forces could not be easily modeled, tests were performed to compare the new
rail support system with the existing system at G-Range.

Using the actual rail and adjuster hardware, a test program characterized the trade-offs between the net rail
stiffness and the adjuster spacing. These two qualities were chosen as good predictors for the behavior of
the support system under actual use. The plan for this test program is given in Appendix A. The results
are presented in Appendix B. Two basic types of tests were performed in this effort:

*  The static stiffness of the rail and supports was measured at mid-span for several different support spacing.
*  The natural frequency of the rail was measured for different support spacing.

TR-602/11-93 11
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Figure 9. Adjuster Stiffness Test Results

Based on these tests, an adjuster spacing of 18 inches was chosen. This spacing was a good compromise
between overconstraining the rail and yet not deviating too far from existing track experience. In addition,
it left open the future possibility for the G-Range personnel to release every other adjuster to allow supports
on a 36-inch spacing.

RAIL POSITION GAGE

This section describes the development and testing of a measurement tool to determine the position of the
rails within the support tube. Previously, these measurements were taken by hand using telescoping gages
and outside micrometers. To reduce the time required to make a taper adjustment, a new gaging system
was needed.

The original Phase Il proposal was based on using a commercial electronic test indicator that would
measure the position of the back of the rail with respect to the support tube. However, after some review
with AEDC personnel during Phase II, it was apparent that a more direct measurement system was needed.
The rail position gage (Figure 10) answers this need. The gage is composed of the following major
subsystems:

o The rail measurement tool, which measures the rail positions within the support tube.
e The tool controller, which houses the support electronics for the measurement tool.
e The pendant and display, which provides the readout for the operator.

The purpose of the rail position gage system is to determine the position of the rail faces with respect to the
centerline of the support tube. This requires the simultaneous measurement of the support tube inteinal
diameter and the positions of each rail face with respect to one side of the support tube. Figure 11 shows a
schematic of this method. Three measurement devices are suspended in the support tube. Device number

TR-602/11-93 12




Figure 10. Rail Position Gage

three is grounded on the left side of the support tube 1.D., and it measures the distance to the right side of
the support tube I.D. The measurement is positive in the direction of the device arrow. Devices one and
two are attached to device three and measure the positions of the rails with respect to the body of device
three. As shown in Figure 11, with proper calibration the positions of the rails can be determined in two
different ways:

o The distance from the actual centerline of the support tube to each rail face can be computed. These
results are called the rail radii.

o The distance between the rails, and their concentricity with respect to the actual centerline of the
support tube, can be computed. These results are called the rail diameter and centering error.

To implement this approach required choosing the proper sensors, packaging the electronics, developing the
calibration system, and building a display and user interface. The following subsections describe the
concept, development, and testing of the rail position gage system.

Rail Measurement Tool

The measurement tool houses the position sensors and provides the stable reference surfaces and locating
features for placement in the support tube. Figure 12 illustrates the original concept for the tool. A flat,
paddle shape is used so that the tool can be inserted through the existing slots in the support tube. Once
inserted, it is rotated 90 degrees to engage the reference surface against the tube wall and the measurement
devices against two rails and opposing tube wall. To measure the other two rails, the tool is rotated 180
degrees around its handle.

This concept required the sensors to be small enough to be packaged into a 1-inch-thick tool, and yet have
sufficient travel to accommodate the range of tapers desired in the track. The following ranges and
accuracies were required: '

The rail position measurement ranges were determined from the total taper range of 3.3 to 3.1 inches. The
accuracy was based on the "gage makers rule" of using a sensor that is ten times the accuracy of the
requirement to locate the rails within £0.002 inch. The range of measurement for the tube diameter sensor

TR-602/11-93 13
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Table 1. Rail Measurement Tool Requiremenfs

Measurement Range Accuracy

Rail Position 0.100 inch +0.0002 inch
Tube Diameter 0.020 inch +0.0002 inch

was based on allowing a generous margin above the print tolerance for the internal diameter. This would
allow the gage to accommodate possible deformation in the support tubes due to use in the G-Range track.

After consideration of several different sensing technologies, linear variable differential transformers
(LVDTs) were chosen for the following reasons:

e The small package size for the transformer portion of the sensor fits within the envelope of the tool.

e The operating ranges are satisfactory for this application: 10.05-inch linear range, +0.07-inch
operational range.

e The accuracies are 0.3-percent linearity over £0.05-inch range, which is £0.00015 inch.

e The sensors are absolute rather than incremental measurement devices. This means that calibration is
not required during system power-up.

e The sensor and driver electronics are commercially available items.

e The power consumption is sufficiently low to permit battery power to be used for the gage system.

The LVDTs were designed into a final measurement tool. Figure 13 shows the outline of this tool with the
sensors in place. The reference surface is forced against the bottom side of the support tube by the toggle
clamp at the top of the tool. Note that the line on the handle of the gage indicates which pair of rails are
being measured. By rotating the gage 180 degrees about the centerline of the handle, the opposing rails can
also be measured. When in place, the diameter sensor measures on a slightly different diameter than the
rail sensors. This is compensated in the electronics and is explained in Appendix C.

Measurement Tool Controller

The rail measurement tool and LVDT sensors are the data acquisition portion of the rail position gage.
However, this data must be converted to terms that are useful to the operator. To accomplish this, the tool
controller was developed. Taken as a whole, the rail measurement tool, pendant, and controller comprise
the rail position gage system. The functions of the tool controller are:

e Supply the power for the system.

* House the support electronics: the signal conditioning electronics for the LVDTs.

* Conversion of the analog signals from the LVDTs to track dimensions in engineering units.
e Perform the calibration functions.

* Provide the operator interface: display track dimensions and operation menus.

To implement the functions for this tool controller, the design shown in Figure 14 was developed. The
basic elements of the tool controller are: the sealed battery, the DC converters, the LVDT
modulators/demodulators, the analog scaling circuitry, the Onset embedded computer, and the pendant
display. A replaceable, commercial video battery supplies the power for the entire rail position gage. DC-
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to-DC converters are used to generate the appropriate power levels for the LVDTs. Commercial
modulator/demodulator modules are used to excite the LVDT coils and convert the return signal to a DC
analog voltage. The demodulated LVDT signals are then scaled and thresholded using analog electronics.
The signals are then converted by the single-board, Onset model SF embedded computer, which is based on
the Motorolla 6803 processor. Within this computer, the appropriate calibration constants are applied to
convert the rail positions to engineering units for display. The hand-held pendant provides the display of
rail position information, as well as providing menus for system calibration and battery life.

When considering the power source for the controller, it was important to keep the system as portable as
possible. Although AC power is available within the track, the use of extension cords was undesirable. In
order to determine whether a portable power source could be used, a model of the power consumption for
the system was developed. The two largest consumers of power in the system are the LVDT electronics
and the backlight for the pendant displays. It was found that if all of these systems are continuously
powered, the operating time for the system with a commercial battery was only two hours. This was not
considered to be adequate. To extend the subsystem operation, the LVDT electronics are switched so that
they are powered for a 15% duty cycle. This is accomplished by using the embedded computer to switch
the LVDT power on, wait for the signal to stabilize, read the LVDT sensor positions, and then switch the
LVDT power off. By using this technique, the operational life of the system was extended to 12 hours.
This duration provides sufficient margin to allow a battery to be used for one shift of operation.

Initially, the pendant backlight was also going to be switched. This function would mimic desktop
calculators that automatically power-down after a certain time if no keys are pressed. Unfortunately, it
was not possible to power cycle the backlight without sporadically resetting the pendant, which results in
loss of communication with the controller. Consequently, -this function was not implemented in the final
system. Despite this, the gage operating time is sufficient for operation at G-Range.

The embedded computer was chosen to minimize the power consumption. Although other small systems
were surveyed, it was found that the Onset model SF had the lowest power consumption when all the

. functions, such as the analog-to-digital conversions, are considered. This computer is commonly used in

remote data logging applications and features built-in, analog-to-digital conversion as well as single-contact
binary input and outputs. In addition, a built-in EEPROM is provided that allows storage of calibration
constants, system serial number, and some diagnostic information. The Onset is programmed for this
controller using TXBasic, which is a variation of the BASIC programming language.

All of the electronics in the controller are mounted on a single, custom PC board. This approach allows
easy diagnostics and replacement of the system should there be a failure. The PC board was designed by
QUEST and fabricated by a local vendor. Spares of the bare board are available at QUEST.

The pendant is a commercial product from Two Technologies, Inc. This band-held unit has a full keyboard
and a four-line display. Figure 15 shows a close-up of the main menu for the display. Only the top four
function keys are used for operating the system. As shown, the main menu allows the operator to choose
the rail data, perform simple diagnostics, or calibrate the system. The rail display formats are either as the
radius distance for each rail or as the rail spacing and centering error. The diagnostics display outputs the
raw LVDT voltages. This display is uscful for troubleshooting the system, but is not used by a typical
operator. The calibration display guides the operator through the sequence of steps to perform a periodic
calibration. This function is discussed in greater detail in the next secticn.

All of the controller electronics are housed in a single box, which is small enough to be carried by one
operator using the soft case and shoulder strap. The front panel of the controller box provides the
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Figure 15. Main Menu Display
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connections for the measurement tool, pendant, and access to the battery. Two complete rail position gage
systems were delivered in this program, and the measurement tool connectors are keyed to their respective
tool controller. This is necessary because the tool controller contains the calibration constants that are
particular to a measurement tool. With the keyed connectors a measurement tool cannot be connected to
the wrong controller.

Rail Gage Calibration

The LVDT sensors in the rail position gage are very linear, stable devices for measuring position. To:
convert the analog voltage output of the LVDTs requires establishing two parameters for each sensor: the
slope and intercept of the line describing voltage output as a function of the displacement of the sensor
core. The slope of each sensor was established in a bench-top test using a micrometer and is stored in
permanent memory in the tool controller. These slopes have proven to be very stable and do not need
periodic adjustment. With only the slope information, the system can accurately report changes in the rail
position but not the absolute position of the rail. Absolute position reporting also requires knowing the
intercept point for each sensor.

To establish the absolute accuracy of the rail position gage, a master calibration fixture was constructed
and certified. Figure 16 shows the calibration fixture with a measurement tool installed. The calibration
fixture accurately simulates a support tube with two rails installed. The fixture's internal diameter and rail
positions are accurately known and are stored in the permanent memory of the controller. To calibrate a
tool, it is placed in the fixture and the calibration menu option is chosen from the main menu. The software
will automatically read the gage positions, calculate the new sensor intercepts, and store them to permanent
memory. This procedure is recommended on a periodic basis, such as at the start of each new track taper
adjustment.
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Figure 16. Rail Position Gage Calibration Fixture

TAPER SCHEDULING SOFTWARE

The taper scheduling software is used to calculate the nominal rail positions given a desired track taper.
Specifically, rail position at each adjustment peint is calculated with respect to the internal diameter of the
support tubes based on starting and ending rail diameters. It was recognized early in the program that if
the rail adjuster spacing was 18 inches then approximately 130 adjustment settings would have to be
calculated for each desired taper. Clearly, this would be best accomplished using a desktop computer. The
key elements of the software design task were:

o The degree of versatility in the program: what lengths of track could be used for the taper and how
many different tapers could be specified? 5

o The features for the user interface: what terminology and format would minimize the level of effort
and training required to use the system?

e The program output format: what information was most useful for implementing and checking a taper,
and how should it be presented?

The initial concept for the scheduling software would support only one uniform taper over all 20 track
sections. However, after reviewing the approach with AEDC personnel, it became apparent that multiple
tapers may be destred in the future and the software should be written to accommodate this feature. Based
on this, a user interface, similar to a computer spreadsheet, was developed. This interface is shown in
Figure 17. Up to four different tapers can be specified: one row is used for each taper. The columns
represent the starting location of the taper, the starting diameter, the ending location of the taper, and the
ending diameter. The slope of the taper is calculated automatically based on the input. The locations arc
specified by unit number, which is clearly marked on the support tubes in the track. The spreadsheet
checks the input to verify that the starting and ending locations are contiguous and not repeated. A help
screen is available to assist the operator.
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The format of the output is a worksheet for the craftsmen to use while making the adjustments or inspecting
the final results. The radius scheduling sheet (Figure 18) provides the operator with a checklist to use
during adjustments. Each row on the worksheet corresponds to a unit number, or support tube. Each
column represents the rail radius for an adjuster location. Seven radii in each row correspond to the seven
adjusters on each support tube. A column is provided next to each adjuster set point for the operator to
check off. Note that some unit numbers have multiple rows to allow a rough adjustment before the final
adjustment. When a large adjustment is required, multiple adjustment steps protect the mechanisms from
binding and make the adjustment more consistent.

The diameter reference sheet is shown in Figure 19. This sheet is similar to the radius schedule, but it is
used to verify the adjustments after the taper has been set in the track. The diameter reference is used in
conjunction with the diameter display on the rail gage. The rail settings can be quickly compared with the
reference sheet and verified or corrected.

INTEGRATION AND TESTING

The Track Tapering System was fabricated and integrated at QUEST. This section discusses the
integration process and the final testing of the system.

MODIFIED TRACK ASSEMBLIES

The support tubes and rails were shipped from AEDC to QUEST for modification and assembly. This
approach was chosen because it posed the least risk to the equipment during modification. The rails were
not modified, but the support tubes were modified to accept the new adjuster assemblies. By making the
modifications near QUEST, the machining operations could be more closely supervised.

The completed support tubes were inspected and stored at QUEST. The adjuster assemblies and rails were
installed to form completed track sections. The sections were tested to insure that the complete range of
adjustment was possible on each rail. The sections were then shipped back to AEDC in advance of the
installation trip.

RAIL POSITION GAGE TESTS

The rail position gages were assembled at QUEST and then debugged and verified for proper function.
Several revisions of the embedded software were tested as the functionality of the system was exercised and
improved. When the gages were completed, the calibration fixture was used to verify the performance.
The gage was placed in the fixture and shim stock was used to change the apparent values for the support
tube diameter and rail positions. The resulting readouts were compared with the known correct values.
The results of this test were all within the required £0.002-inch accuracy.

The rail position gages were also tested by symmetry on the calibration fixture. In this test, the tool is
inserted in the fixture, and the readings are recorded. The tool is then flipped 180 degrees about the
centerline of the fixture, so that the tool bottoms against the opposite side of the fixture, and the rail
position sensors swap rails for measurement. The readings before and after the swap were compared and
found to be within £0.0005 inch. This test was repeated on actual tube sections and found to be repeatable
to within +0.001 inch i1 most cases and always within £0.002 inch.
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QI? RADIUS SCHEDULING SHEET

Log Date s 02-24-1993

Log Time : 14:48

Group 1 data : 77, 3.3, 96, 3.1

Operator : Tim Call

Comment : Max Adj = 0.025 inches (1/2 turn)

downrange ==--—===- >

G|Un|v|Stripe|v|Stripe|v|Stripel|v|Stripe Stripe|v|Stripe{v|Stripe
1177 1.6495 1.6490 1.6480 1.6475 1.6470 1.6460 1.6455
1[(78 1.6445 1.6440 1.6430 1.6425 1.6420 1.6410 1.6405
1179 1.6395 1.6390 1.6380 1.6375 1.6370 1.6360 1.6355
1180 1.6345 1.6340 1.6330 1.6325 1.6320 1.6310 1.6305
1(81 1.6295 1.6290 1.6280 1.6275 1.6270 1.6260 1.6255
1|82 0.5CW 0.5CW 0.5CW 0.5CwW 0.5CW 0.5CW 0.5CW
1182 1.6245 1.6240 1.6230 1.6225 1.6220 1.6210 1.6205
1i83 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW
1i83 1.6185 1.6190 1.6180 1.6175 1.6170 1.6160 1.6155
184 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW
184 1.6145 1.6140 1.6130 1.6125 1.6120 1.6110 1.6105
1i85 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW
1185 1.6095 1.6090 1.6080 1.6075 1.6070 1.6060 1.6055
1(86 0.5CW 0.5CwW |0.5CW 0.5CwW 0.5CW 0.5CW 0.5CW
1(86 1.6045 1.6040 1.6030 1.6025 1.6020 1.6010 1.6005
1(87 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW C.5CW
1{87 0.5CW 0.5CW 0.5CwW 0.5CW 0.5CW 0.5CW 0.5CW
1187 1.599%85 1.5990 1.5980 1.5975 1.5970 1.5960 1.5955
1|88 0.5CW 0.5CwW 0.5CW 0.5CwW 0.5CW 0.5CW 0.5CwW
1(88 0.5CwW 0.5CW 0.5CwW 0.5CwW 0.5CW 0.5CW 0.5CW
1(88 1.5945 1.5940 1.5930 1.5925 1.5920 1.5910 1.5905
1(89 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW 0.5CW
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o

QI3 - DIAMETER REFERENCE SHEET

‘ Log Date ¢ 02-24-1993
| Log Time t 14:48
- Group 1 data : 77, 3.3, 96, 3.1
Operator : Tim Call
Comment : Max Adj = 0.025 inches (1/2 turn)
downrange =—--—---- >
G|Un|v|Stripe|v|Stripe|v|Stripe|v|Strjpe|v|Stripe|v|Stripe|v|Stripe
1177 3.299 3.298 3.296 3.295 3.294 3.292 3.291
1178 3.289 3.288 3.286 3.285 3.284 3.282 3.281
1(79 3.279 3.278 3.276 3.275 3.274 3.272 3.271
180 3.269 3.268 3.266 3.265 3.264 3.262 3.261
1181 3.259 3.258 3.256 3.255 3.254 3.252 3.251
1182 3.249 3.248 3.246 3.245 3.244 3.242 3.241
1183 3.239 3.238 3.236 3.235 3.234 3.232 3.231
. 1184 3.229 3.228 3.226 3.225 3.224 3.222 3.221
1185 3.219 3.218 3.216 3.215 3.214 3.212 J.211
. 186 3.209 3.208 3.206 3.205 3.204 3.202 3.201
1187 3.199 3.198 3.196 3.195 3.194 3.192 3.191
1({88 3.189 3.188 3.186 3.185 3.184 3.182 3.181
189 3.179 3.178 3.176 3.175 3.174 3.172 3.171
1{%0 3.169 3.168 3.166 J.165 3.164 3.162 3.161
1(91 3.159 3.158 3.156 3.155 3.154 3.152 3.151
1192 3.149 3.148 3.146 3.145 3.144 3.142 3.141
193 3.139 3.138 3.136 3.135 3.134 3.132 3.131
194 3.129 J.128 3.126 3.125 J.124 3.122 3.121
1{95 3.119 J.118 3.116 3.115 3.114 3.112 3.111
1196 3.109 3.108 3.106 3.105 3.104 3.102 3.101

Figure 19. Diameter Reference Sheet
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TAPER SCHEDULING SOFTWARE TESTS

The taper scheduling software was tested by computing several complex, multiple-section tapers and
generating the scheduling sheets. These same tapers were then computed using commercial PC spreadsheet
software. The values were cross checked for consistency and accuracy.

DELIVERABLES

The following specific deliverables have been provided as part of the project:

1. A total of 20 modified support tubes with adjuster mechamsms and rails installed. One additional
support tube was modified as a spare.

Two complete wrench sets for the adjusters.
3. Two complete rail position gage systems. Each system includes:
Rail measurement tool
Tool controller and pendant
Spare battery
Battery charger
Soft carrying case
Hard-shell case for the complete gage set
Rail position gage calibration fixture and hard-shell case.
Rail squaring tool and hard-shell case.
User's Manual for the rail position gage (QUEST TC-378).
Taper scheduling software on 3.5-inch diskette.
Spare adjuster assembly parts.

© % N v s

Modified adjuster wrench sets.
10 Pendant display stands.
11. Final report.

INSTALLATION AND TRAINING

After integration and testing, the track tapering equipment was shipped to AEDC. This was done in
advance of the installation trip to allow AEDC adequate time to install the track sections in G-Range.
QUEST personnel made one trip to train the AEDC personnel on the use of the tapering equipment.

TRAINING SESSIONS

Two hands-on training sessions were held at AEDC to train the personnel on the use and capabilities of the
equipment. The first session was conducted in a shop area and was intended to familiarize the craftsmen
with the system components. Six craftsmen participated in this session. A single track section was used for
demonstration. During this session, the craftsmen performed the following activities:

o Installation of the adjusters and rails in a modified support tube.
e Squaring, or clocking, the rails with respect to each other.
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e Operating the rail position gages.

* Reading and understanding the radius scheduling sheets.
o Setting a taper on the demonstration track section.

e Review of the User's Manual for the rail position gage.

A second training session was held inside of the G-Range Hypervelocity track. During this session, the
craftsmen worked in two groups of three to actually set the taper in several sections of the track. At this
point, the QUEST personnel provided supervision and guidance only where necessary to give the craftsmen
a chance to exercise their skills.

In parallel with these two sessions, the taper scheduling software was installed on a computer in the
engineering offices. An AEDC engineer had the opportunity to generate a track taper schedule for use in
the second training session.

TRACK TAPER ADJUSTMENT

At the conclusion of the training classes, the QUEST personnel completed setting the track taper in 17 of
the 20 track sections. The three remaining track sections were not installed at the time. The track tapering
operation was completed by three QUEST engineers using two rail position gages in one and one-half
days. During this tapering operation, the following problems were found:

e One track section had a bulge in the diameter of the support tube of about 0.040 inch. This was
apparently from previous track damage. QUEST recommended that this track section be replaced.

e In three locations the adjusters were not easily accessed because of track support hardware. Modified
adjuster wrenches were recommended.

e The hand-held pendants needed a means for securing them to the track sections during use. Fabrication
of clips or other devices was recommended.

At the conclusion of the installation trip, a debriefing session was held with AEDC personnel. It was
agreed that QUEST would provide the recommended equipment by the conclusion of the contract.

SUMMARY

In this program, QUEST developed and installed a rapid track tapering system at the Hypervelocity Test
Track. Three key subsystems were built: hardware to rapidly adjust the rail positions in the track, a gage
to measure the rail positions, and stand-alone software to plan all the rail positions for a desire track taper.
The U.S. Government will derive two important benefits from the use of this system:

* Track tapers can be implemented and checked in less time and with fewer resources than the previous
system.

» The Hypervelocity Test Track will have improved capability because the track taper can more easily be
tailored to the specific conditions of a projectile test.

The system was successfully installed and AEDC personnel were trained in the use and maintenance of the
equipment.
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INTRODUCTION

This document outlines the tests that will be performed by QUEST Integrated, Inc., to
compare the proposed (adjustable) rail support system with several existing (fixed) rail support
systems. = These tests are proposed as a substitute for the in-range tests that were originally
scheduled. The in-range tests are not possible because of the tight test schedule for the G-

Range track.

OBJECTIVE

The objective of these tests is to gather data comparing the proposed support system to
the existing support system. This comparison will allow for G-Range Operations to evaluate the
performance of the proposed support system, with respect to the existing system, and to approve

the new design for implementation in the track.

APPROACH

These tests will evaluate the stiffness and natural frequency of the rails when supported
by the alternative systems. The stiffness tests will measure the rail deflection for known loads
applied in the radial direction. This measurement will provide an indication of the apparent
stiffness of the system during model impacts. The load/deflection tests will be carried out
directly over the supports and at intervals between supports.

The natural frequency tests will measure the vibration of the rail in the transverse (radial)
direction when excited by a hammer blow. This measurement will provide an indication of the
reaction of the system to a model impact. An accelerometer and spectrum analyzer will be used
to measure the frequency of the "ringing" of the rail in response to the impulse load.

Several support schemes will be evaluated for comparison. The existing method of bolting
the rail to the support tube will be tested at three different nominal spacings: 12 in., 18 in.,
and 36 in. The proposed actuator design will be tested on an 18 in. (nominal) spacing.

An analysis was performed to better understand rail stiffness and natural frequency for
the various support spacings. Values for stiffness and resonant frequency were calculated at
intervals and plotted to show trends. Also, the model critical speed was calculated and plotted.
The model critical speed is the speed at which the model could potentially induce a resonant
vibration in the rail. Lastly, the longitudinal and transverse stress wave speeds for the steel rails

were calculated to aid in the understanding of the model/track rail interaction.

Rail Stiffness
The rail can be modeled as a beam supported at a number of regular intervals, as shown

in Figure la. The load/deflection between supports can be approximated by more simple




models. Deflection of the actual rail will be bounded by the conditions shown in Figures b
and lc. Solutions to these conditions are readily found in tables for load/deflection of elastic
beams (Shigley, 1977). At the center location, these solutions differ by a factor of four, which
is not a very close approximation.

The condition shown in Figure 2 is a better approximation to the actual rail support
system. This condition can be solved, using formulas from load/deflection tables and the
principle of superposition, to combine two loading cases. This is the solution used to calculate
rail stiffness vs spacing. Values calculated using this condition yield load/deflection at a 27%
interval between cases Ib and lc. This is 2 much more reasonable approximation. Figure 3 is a
plot of rail spring rate vs rail spacing. Note that the rail stiffness is inversely proportional to
the cube of support spacing. Rails supported on 12-in. centers are about 3.4 times stiffer than
those supported on 18-in. centers. Rails supported on 18-in. centers are 8 times stiffer than

those supported on 36~in. centers.

Natural Frequency

The formula for the vibration of uniform beam is shown in Figure 4 (Roark, 1982). The
first mode of vibration depends only on the node (or support) spacing for a beam with fixed
ends and is inversely proportional to the square of the support spacing. Figure 5 shows a plot

of the frequency of the first mode of vibration vs support spacing.

Model Critical Speed

If the model were traveling down the track at a speed such that the model was over
adjacent midpoints between rail supports in one half a period of vibration, a resonance could be
excited. We have called this the model critical speed. This example is not the only condition
under which a resonance could be induced, however, in this case, the effect would be the most
pronounced. Figure 6 shows the condition used to analyze model critical speed and Figure 7 is
a plot of model critical 'speed Vs support spacing.

Table | shows the calculated values for rail stiffness, natural frequency, and mode! critical

speed for rail support spacings between 10 and 50 in.

Wave Propagation Speed

As shown above, model speeds are typically many times that of the model critical speed. This
section compares model speeds with the rate that information about a collision propagates to the
rail supports and downrange along the rail. This information is conveyed as a stress wave. The
speed of propagation of a transverse stress wave 1s slower than that of a longitudinal stress

wave. The formulae for the speeds are given below (Timoschenko, 1970). The speed of a
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Table 1. Stiffness, Natural Frequency, and Critical Model Speed as a Function of Rail Spacing
87EI= 1.62E+09 LB*IN"2

SQ(EIg/w)= 125000 IN~2/SEC

RAIL STIFFNESS FREQUENCY CRITICAL

SPACING SPEED
IN LB/IN Hz FT/SEC
10 1621000 1963 3272
12 938079 1364 2727
14 590743 1002 2337
16 395752 767 2045
18 277949 606 - 1818
20 202625 491 1636
22 152235 406 1487
24 117260 341 1364
26 92228 290 1259
28 73843 250 1169
30 60037 218 1091
32 49469 192 1023
34 41243 170 962
36 34744 152 909
38 29541 136 g61
40 25328 123 818
42 21879 111 779
a4 19029 101 744
46 16654 93 711
48 14657 85 652
50 12968 79 654

longitudinal wave in steel is about 16,900 ft/s. The speed for a transverse wave in steel is about
10,200 ft/s. Since transverse waves are the ones that could cause rail displacement, which could
interfere with the model, they would be of concern. This means that for model speeds above

10,000 ft/s no pertinent information about model/rail impacts could be transmitted down the
rail.

CL = (E/p)/?
Ct = (G/p)*/?

WORK PLAN
The following section outlines the proposed sequence of tasks for this evaluation.

Test Bed Fabrication

A test has been fabricated to allow mounting the rail with either the existing or the pro-
posed system. This test bed was made by modifying the structural steel angle used for earlier
adjuster tests. This shape is approximately 35 times stiffer than the rail. A hydraulic clamping

system has been fabricated to allow loads to be applied to the rail at intervals along the track.
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Support System Evaluation:
Baseline Tests

Tests will be performed with a rail installed in the track section, on hand at QUEST, to
compare test setup to actual setup. A rail will be installed in the 10-ft closed-rail section on
12-in. nominal centers with shims. Loads will be applied using the same jack used on the test
bed to establish a baseline for comparing the results found with the test bed. An accelerometer

will be attached to the rail and its’ natural frequency will be tested to establish baseline data.

Stiffness Tests ,

Each support system will be implemented on the test bed. Rails will be installed at
nominal 12 in., 18 in., and 36 in. spacings using bolts and spacers as fasteners. A dial indicator
will be placed so as to measure the displacement between the rail and test fixture. Each rail
will be loaded at a midpoint between supports using the hydraulic jack. The deflection for
loads between 0-1000 Ib, in 100-1b increments, will be recorded. The data will be stored in

electronic format and graphed for comparisons with calculated values.

Natural Frequency Tests

Natural frequency will be tested by attaching an accelerometer to the rail and exciting
vibration with a hammer blow. The signal from the accelerometer will be fed into a frequency
spectrum analyzer to determine the resonant frequency of the rail. The data will be stored in

electronic format and graphed for comparisons with calculated values.

Reduction and Reporting

The data will be reduced and evaluated for presentation to G-Range Operations. A brief
report will be written summarizing the test procedures, results, and recommendations. Tabular
data from the tests performed and plots of the stiffness and frequency data will be included in

the report.

REFERENCES

Roark, R. J. and Young, W. C. (1982) Formulas for Stress and Strain, McGraw-Hill, New
York.

Shigley, J. E. (1963) Mechanical Engineering Design, McGraw-Hill, New York.
- Timoshenko, S. P. (1970) Tkzory of Elasticity, McGraw-Hill, New York.
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INTRODUCTION

This appendix presents the results of the rail tests that were conducted as part of the Track Tapering
project. These tests were conducted per the plan presented in QUEST Technical Communication No. 334,
"Laboratory Tests for the Adjustable Rail Support System." Two categories of tests were conducted:

o Static stiffness tests to compare the proposed rail mounting system with the existing method.
o Natural frequency measurements to compare the "ringing" in the rail from a projectile impact.

These two series of tests illustrated the behavior of the rail and mounting system under conditions similar to
those that might be encountered during track operation. Note that in this report, two different rail sizes are
compared: 2.5- and 3.3-inch rails. The 2.5-inch rails refer to the existing rails in the track, which are sized
for a 2.5-inch projectile. They are actually 2.25 inches high by 0.75 inch wide. The 3.3-inch rails are
sized for a 3.3-inch projectile, and they are actually 1.85 inches high by 1.0 inch wide. These sizes were
tested because at the time it was not clear whether the program would be coordinated with the track
upgrade to accommodate 3.3-inch projectiles. In the end, the tapering project was coordinated with the
track upgrade. However, the final rail size for "3.3" was 1.85 inches high by 0.75 inch wide. The data
presented here can be scaled by the area properties to predict the performance for the final rail size.

RAIL STIFFNESS TESTS

The first test was used to establish a stiffness baseline for the existing rail-mounting method. An existing
rail was installed in a track support tube at QUEST. The rail was bolted to the support tube on 12-inch
centers. Shims were used to space the rail away from the support tube wall in order to simulate a track
taper condition. Forces were applied to the mid-span of the rail, and the deflection of the rail face with
respect to the support tube wall was measured. Figure B-1 shows the stiffness for bolts on 12- and 36-inch
centers. The slopes of these graphs represent the equivalent spring rate of the rail and are shown in the
figure.

A bench test was then constructed to test the rail support distances for both. the bolting method and for
using the new adjuster mechanisms. A second series of tests was run on the 12- and 36-inch support
spacing to compare the bench test setup with the tube-mounted tests. As shown in Figure B-2, the results
compare quite favorably with the spring rates in the previous figure. These results give good confidence in
the bench test setup. Note that some hysteresis is apparent for the loading cycle for the 36-inch support
spacing. This was found to be attributable to the seal friction in the hydraulic jack that was used to apply
the forces. The hysteresis was eliminated in subsequent tests by adding a load cell to the bench test in order
to directly measure the forces applied to the rail.

The complete results of the rail stiffness tests are shown in Figure B-3. The lines on the graph indicate the
predicted stiffness based on the modeling in TC-334. Note that approximately 20 percent of stiffness is
lost with the actuators in comparison to the bolts. This is because the bolts more closely approximate a
fixed end condition that resists moments at the mounting point. The adjusters more closely approximate a
simple support that does not resist moments.
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NATURAL FREQUENCY TESTS

These tests were conducted to measure the natural frequency of the rail as a function of the distance
between bolted mounting points. In these tests, the rails were mounted on the bench fixture from the
stiffness tests. An accelerometer was mounted at mid-span between mounting points. Vibrations were
excited in the rail by using a soft-blow hammer to simulate a projectile strike. The accelerations of the rail
were recorded using a high-speed digital oscilloscope. The data was then transferred to a PC for analysis.
A fast Fourier transform was performed to identify the spectrum of vibration response from the.rail. The
lowest natural frequency was identified from the spectral analysis and graphed in Figure B-4. The line
shows predicted response, and the data points are for a 2.5-inch rail. Three support spacings were
measured: the existing 12-inch, 18-inch, and 36-inch spacing.

N
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APPENDIX C
RAIL POSITION GAGE CALIBRATION



INTRODUCTION

This appendix describes the details of the calibration of the rail position gage. It is not recommended that
in-depth calibration be performed by the customer. Instead, it recommended that the gage and calibration
fixture be returned to QUEST for calibration and service.

The first section of this appendix describes a general principle that is used to compensate for the 10-degree
angle between the line of action for the diameter measurement and the line of action for the rail radius
measurements. This principle is encoded in the gage software and is transparent to the user. It is included
here for completeness. The second section presents the calibration equations that are embedded in the gage
software and used for calculating the intercepts for the sensors. The third section provides a map of how
these constants are stored and accessed in the rail position gages.

GEOMETRIC COMPENSATION FOR DIAMETER

The Rail Measurement Tool is constructed with a 10-degree angle between the line of measurement for the
tube diameter and the line of measurement for the rail positions. This is necessary because the rails block
access to the tube wall on the same line of measurement as the rail faces. As shown in Figure C-1, the
measurement tool seats against the left side of the support tube internal diameter. The M3 sensor measures
the diameter, M1 and M2 measure the positions of rail #1 and rail #2 with respect to the measurement tool
body. If the rails maintain position with respect to one another and with respect to the centerline of the
support tube, but the internal diameter of the support tube increases by a small amount (AR), the
measurement tool shifts, as shown in Figure C-2. This shift is because the tool is always referenced on the
left side of the figure. Comparing Figure C-1 and Figure C-2, it is clear that sensor M3 changes by the
amount of change in the diameter. However, the change in the rail position sensors M1 and M2 is more
complicated.

A close-up of the reference contact point is shown in Figure C-3. Both the original and shifted contact
points are shown. The distance between these two points, O, is a horizontal shift of the measurement tool
and it can be approximated by: '

0= AR (1)
cos(45°-¢)
Where ¢ is the angle between the lines of action for the measurements. For this measurement tool, ¢ is 10
degrees. Given that the entire tool shifts by amount O, the change in measurement at the rail is shown in
Figure C-4. The contact point for M2 shifts horizontally by the same amount O as calculated in Equation
1. The change in sensor M2 after the shift is given by:
=]
AM?2 = Oxcos(450) = M 3%c0s(45°) Q)
2%¢0s(35°)
This equation yields the correction factor for this gage geometry. As stated in Figure 11 in the main body
of this report:

G, = M3%0.4316 3)

Note that this expression for G is about 15 percent different than the simpler case when the lines of action
for the two types of measurements coincide.
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RAIL POSITION GAGE CALIBRATION EQUATIONS

This section describes the equations that are used during the automatic calibration sequence. The calibration of
the rail position gage requires determining two parameters for a straight line that describes each sensor:

Mi=Gi*LI/DT,'+Oi (4)

where G; is the gain in volts of sensor output per inch of sensor displacement. This parameter reflects the
small variations in the sensitivity of the sensors. LVDT; is the voltage as read at the input terminals to the
embedded computer. This voltage value includes all of the signal conditioning electronics. O; is the
intercept, or the offset to be subtracted from the computed displacement in order for the measurement to be
correct for the calibration fixture. This parameter reflects the small errors in the locations of the sensors
relative to the reference surfaces of the rail measurement tool.

The slope for each sensor is measured on a bench-top test. A micrometer is used to displace the sensors by
known amounts and the resulting voltage output of the sensor is recorded. These values are then stored in
the measurement tool controllers according to the description in the next section. By convention, the slopes
are stored as positive numbers.

The intercept for each sensor is measured using the calibration fixture. The known dimensions of this
fixture are used to calculate the correct offsets for each sensor.

The diameter (M3) sensor must be calibrated first because it couples into the other measurements through
the G factor. Referring to the equation for the support tube diameter from Figure 11:

LVDT,
—N3
Note that the negative sign is introduced because G 3 is actually negative even though it is stored in the tool
controller as a positive number. For a known diameter X/ from QUEST drawing 66572 (see Appendix D):
LVDT;
3

This yields the offset for the M3 sensor. To find the offset the M2 sensor, the equation for the radius of
rail #2 is used from Figure 11:

D, = M3+7.000=

+03+7 5)

O3= X1+ 7 (6)

LVDT
Ry=M;~G. =—%+0,~G,
2 (7)
From a known rail radius X3 on QUEST drawing 66572:
02=,\f3+LVDT2 +0.4316(LVDT3 +03J (8)
G, -Gs

Similarly, for finding the offset for the M1 sensor with a known X2 dimension from QUEST drawing 66572:

01=X2+LVDT1—0.4316 -L—I%ﬁuo3 9)
Gy -Gs

These calculations are performed in the measurement tool controller software and are transparent to the
user. The next section explains how these constants are stored in the tool controller.
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MEMORY MAP FOR CALIBRATION CONSTANTS

The calibration constants for the rail position gage are stored in the EEPROM memory of the embedded
control computer. The correct constants have been initialized by QUEST for each cof the two rail position
gages. In effect, the EEPROM memory acts as a personality module for the gage. The reader is strongly
cautioned against changing these constants. The description listed below is for reference only.

The calibration constants are accessed through the "diagnostics” menu. This choice will bring up a
submenu, and the "options" choice should be selected. Another sub menu will appear, and the "constants"
choice should be selected. These functions require the operator to enter a password. The password is:

7734 <RETURN>

That is, use the keypad on the pendant to enter the numbers 7734 and then the RETURN key on the
pendant. Using this password will provide access to the constants listed in Table C-1.

Table C-1. Calibration Constants

Variable | Variable Value for | Value for

Location Name Name Function Gage 1 Gage 2

1 X1 Reference Drawing 66572 | Diameter of Calibration 7.00054 | 7.00054
Fixture

2 X2 Reference Drawing 66572 | Rail #2 Radius of Calibration | 1.65033 1.65033
Fixture

3 X3 Reference Drawing 66572 | Rail #1 Radius of Calibration | 1.65120 [ 1.65120

A Fixture

4 Gl M1 Gain in Volts/Inch 327 32.7

5 G2 M2 Gain in Volts/Inch 31.19 34.45

6 G3 M3 Gain in Volts/Inch 33.93 39.91

7 0l Ml Offset in Inches 1.7 1.7

8 02 M2 Offset in Inches 1.7 1.7

9 03 M3 Offset in Inches 0.05 1.7

10 S Gage Serial Number 1 2

Each constant will be displayed, and a prompt will ask if the constant is to be changed. If not, simply press
the return key on the pendant. If so, enter

Y<RETURN>

A new prompt will appear asking for the modified constant value. Note that as soon as the constant is
entered it is stored over the old value.
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INSPECTION REPORT

(1

Job No. ?, ( 'j! [ é) Date é =/ /"’ 93 Sheet / of /

|

First Piece in Process Final /

Customer QLJ E_ST IMTEGRATE:D 4 INC.. Purchase Order No. QP 199 ‘45

DWG No. __ 1246 <72, Part Name MMEMmerial h——
Quantity Ordered / Quantity Inspected /
Check Specification Tol. Actual Size Variation Basic Deviation

Xl |7.222="01 | — |7 0008

X2' |rest—T7zo| — |/ 65033 —
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1es 70| — |l.65/20] ——
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